Discovery of how cells sense oxygen levels earns Nobel Prize
If you are wondering what on Earth that means, HIF, or hypoxia-inducible factor, is a protein that increases inside the cell when the oxygen levels fall, helping the cell survive.
The recipients of this year’s Nobel Prize in Physiology or Medicine are W. G. Kaelin , P. J. Ratcliffe and G. L. Semenza. They won for their pioneering research into how the cells sense and adapt to low oxygen conditions.
Scientists study how low levels of oxygen affect the way cells communicate and the impact this has on metabolic diseases like obesity, type 2 diabetes and cancer.
Understanding how cells talk to each other in a low oxygen environment – like a tumor – is critical for learning how cancers grow and progress.
Both the environment and the physiological status of the body determines how much oxygen is available to cells. For example, in higher altitudes, oxygen availability decreases. This is especially important for mountain climbers, who must adapt to altitude in order to help their body increase the oxygen carrying capacity in the blood. This is essential to avoid mountain sickness and other altitude-associated health issues such as pulmonary and cerebral diseases.
Oxygen levels in the human body are constantly fluctuating, depending on whether the individual is eating or fasting, exercising or resting and even whether they are stressed or calm. For example, during exercise, the oxygen supply to the muscles is increased to supply energy. This leaves less oxygen for other organs such as the liver.
In many diseases, damage to the blood vessels can drop blood supply, and thus oxygen supply, to the affected organ, which may make the patient even sicker. Thus, the oxygen levels within the cell are important to both healthy and sick people.
Cells adapt to changes in oxygen levels by making more of a protein called hypoxia-inducible factor-1 or HIF-1. When oxygen levels decrease, the HIF protein inhibits oxygen-consuming processes of the cells by altering the activity of numerous genes, thereby enabling the cells to adapt quickly and survive the low oxygen environment.Also how oxygen levels in the cells regulate the amount of HIF-1 produced.
HIFs are now known to control a diverse array of functions in many different types of cells, including immune, brain and cancer cells.
In the last decade, researchers have shown that HIFs have a pivotal role in promoting the growth of tumors. Cancer cells divide and grow rapidly and have a larger appetite for both nutrients and oxygen. But the blood vessels feeding the tumor cannot keep up with the cancer growth.
The clever cancer cells survive by producing higher quantities of HIF protein. The HIF proteins trigger changes in cancer cell metabolism, and switch them to a low oxygen and low energy mode. This helps the cancer cells to survive in oxygen- and nutrient-poor conditions, and keep growing and spreading.
Some research has even shown that the increase in HIF in cancer cells induces drug resistance to chemotherapy. Thus, pharmaceutical companies are now targeting HIF in the treatment of numerous cancers.
As oxygen is involved in all cellular processes, the discovery of the mechanisms by which cells are able to detect and rapidly respond to changes in oxygen levels has revolutionized biomedical research and helped to identify novel targets for various diseases treatments.